Selective regulation of Notch ligands during angiogenesis is mediated by vimentin.

نویسندگان

  • Daniel Antfolk
  • Marika Sjöqvist
  • Fang Cheng
  • Kimmo Isoniemi
  • Camille L Duran
  • Adolfo Rivero-Muller
  • Christian Antila
  • Rasmus Niemi
  • Sebastian Landor
  • Carlijn V C Bouten
  • Kayla J Bayless
  • John E Eriksson
  • Cecilia M Sahlgren
چکیده

Notch signaling is a key regulator of angiogenesis, in which sprouting is regulated by an equilibrium between inhibitory Dll4-Notch signaling and promoting Jagged-Notch signaling. Whereas Fringe proteins modify Notch receptors and strengthen their activation by Dll4 ligands, other mechanisms balancing Jagged and Dll4 signaling are yet to be described. The intermediate filament protein vimentin, which has been previously shown to affect vascular integrity and regenerative signaling, is here shown to regulate ligand-specific Notch signaling. Vimentin interacts with Jagged, impedes basal recycling endocytosis of ligands, but is required for efficient receptor ligand transendocytosis and Notch activation upon receptor binding. Analyses of Notch signal activation by using chimeric ligands with swapped intracellular domains (ICDs), demonstrated that the Jagged ICD binds to vimentin and contributes to signaling strength. Vimentin also suppresses expression of Fringe proteins, whereas depletion of vimentin enhances Fringe levels to promote Dll4 signaling. In line with these data, the vasculature in vimentin knockout (VimKO) embryos and placental tissue is underdeveloped with reduced branching. Disrupted angiogenesis in aortic rings from VimKO mice and in endothelial 3D sprouting assays can be rescued by reactivating Notch signaling by recombinant Jagged ligands. Taken together, we reveal a function of vimentin and demonstrate that vimentin regulates Notch ligand signaling activities during angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAM-mediated shedding, a new flavor in angiogenesis regulation.

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis (ie, blood vessel formation). VEGF acts by binding to the VEGF receptor 2 (VEGFR2) tyrosine kinase, expressed on endothelial cells. In healthy individuals, the vasculature is quiescent; invasion of vascular sprouts into the surrounding tissue during angiogenesis is tightly regulated by the Notch family of ligands and r...

متن کامل

Novel insights into the differential functions of Notch ligands in vascular formation

The Notch signaling pathway is a critical component of vascular formation and morphogenesis in both development and disease. Compelling evidence indicates that Notch signaling is required for the induction of arterial-cell fate during development and for the selection of endothelial tip and stalk cells during sprouting angiogenesis. In mammals, two of the four Notch receptors (Notch1 and Notch4...

متن کامل

NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth.

UNLABELLED A proangiogenic role for Jagged (JAG)-dependent activation of NOTCH signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of Delta-like ligand (DLL)-class and JAG-class ligand-receptor interactions, and developed NOTCH decoys that function as ligand-specific NOTCH inhibitors. N110-24 decoy blo...

متن کامل

Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity

BACKGROUND In the vasculature, Notch signaling functions as a downstream effecter of Vascular Endothelial Growth Factor (VEGF) signaling. VEGF regulates sprouting angiogenesis in part by inducing and activating matrix metalloproteases (MMPs). This study sought to determine if VEGF regulation of MMPs was mediated via Notch signaling and to determine how Notch regulation of MMPs influenced endoth...

متن کامل

Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis.

Notch and its ligands play critical roles in cell fate determination. Expression of Notch and ligand in vascular endothelium and defects in vascular phenotypes of targeted mutants in the Notch pathway have suggested a critical role for Notch signaling in vasculogenesis and angiogenesis. However, the angiogenic signaling that controls Notch and ligand gene expression is unknown. We show here tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 23  شماره 

صفحات  -

تاریخ انتشار 2017